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Abstract

Scanning nanobeam

The immediate products of x-ray absorption in aqueous biological samples are free radicals including *OH, H,O,, *H
and solvated electrons. Because their lifetimes and diffusion ranges are dependent on the local bio-molecular
environment, imaging these free radicals in real-time while they are produced by a scanning x-ray nanobeam may
provide a biological microscopy method of high resolution. As a first step towards this goal, we investigated the
feasibility of imaging the initial free radical products of x-ray absorption in live cells using fluorescent free radical
sensors. We selected six commercially available fluorescent sensors for screening tests of their sensitivities towards
x-ray radiation in solution form. Two of the six dyes were found to have high sensitivities. One of the two was
successfully used for dynamic confocal fluorescence imaging of x-ray generated free radicals in the intracellular
space of mouse embryonic fibroblasts. Time series of fluorescence images before and during x-ray radiation were
acquired. The rate of increase of cellular fluorescence showed both the initial production of free radicals by the
physical ionization events as well as stimulated biological production of reactive oxygen species later on. The
implications of the results for future development of microscopy techniques are discussed.
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Background

The absorption of x-ray photons in aqueous biological
samples results in the ionization of water molecules into
free radical products, which react with biomolecules in
the local environment and begin a cascade of long lasting
biological effects(Schmidt-Ullrich et al. 2000; Spitz et al.
2004). The purpose of our study is to image the immediate
free radical products of the x-ray ionization events in live
cells in situ using fluorescent sensors. Fluorescent sensors
of reactive oxygen species (ROS) have been used effect-
ively to assay radiation-induced free radicals and oxidative
stresses in cells(Morales et al. 1998; Narayanan et al. 1997;
Wan et al. 2003). They are non-fluorescent molecules in
their initial state and are converted to fluorescent forms
upon reaction with free radicals. Over a decade ago Leach
and co-authors demonstrated elegantly that fluorescence
microscopy of the ROS sensor Dihydro-DCF can monitor
radiation-induced, mitochondria-dependent generation of
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ROS in live cells(Leach et al. 2001). However, to date we
are not aware of any studies that focus on imaging the ini-
tial free radical products of x-ray absorption.

Our interest in imaging the initial free radical products
of x-ray absorption in situ is prompted by the rapid pro-
gress of intense x-ray nanobeams at synchrotron sources
(Cholewa et al. 2001; Ice et al. 2011; Kang et al. 2006;
Mimura et al. 2010)and possibly in laboratory settings
(Kneip et al. 2010), which can potentially deliver bursts
of free radicals to specific sites in a cell or tissue at
nanometer resolution(Prise and Schettino 2011). These
free radicals have limited lifetimes and diffusion ranges
(a few nanometers for the most abundant hydroxyl free
radical, for example)(Kim 2008; Roots and Okada 1975).
They are therefore localized to the site of irradiation.

With this in mind, fluorescence imaging of the initial
free radical products in real time may allow a biological
imaging method to be developed, where an x-ray nano-
beam is scanned over the sample to achieve high reso-
lution, and simultaneously the immediate radiolysis
products are detected by imaging the fluorescent sen-
sors. The fluorescence signal will be dependent on the
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lifetime and mobility of the initial free radicals, which in
turn relates to their interaction with biomolecules at the
site of irradiation(Roots and Okada 1975). Therefore, the
combination of free radical imaging and x-ray nanobeam
scanning may provide biological information at high
resolution. Another potential use of this combination is
to image immobilized free radical sensor molecules at
high resolution. If such sensor molecules can be
attached to structures of interest, then they function as
x-ray activated fluorescent tags in analogy to photo-
activated fluorescent dyes(Betzig et al. 2006; Patterson
and Lippincott-Schwartz 2002).

As a first step towards these goals, we aim to perform
in situ fluorescence imaging of free radical production in
cells under the irradiation of a compact x-ray tube. In
aqueous biological samples, x-ray absorption is predom-
inantly by water molecules. The primary free radical
products of the radiolysis of water and their yields
(molecules/100 eV) are -OH (2.80), eyq (2.65), HyO,
(0.68), and -H (0.60)(Meesungnoen et al. 2001; Sehested
et al. 1973). There are many commercially available
fluorescent ROS sensors that may respond to one or
more of the above products. Generally upon reaction
with the free radicals, the dye molecule is transformed
from a non-fluorescent to a fluorescent form.

We selected an initial set of 6 fluorescent ROS sensors
for sensitivity measurements in solution state against x-
ray irradiation. Based on the results, one of the 6 dyes
was further tested in live cell imaging experiments. Our
basic experimental design was to observe the fluores-
cence in the cells over a period of time before the x-ray
source was turned on, which served as the control. Then
the x-ray beam was switched-on to produce free radicals
continuously and cause a steady rise of the fluorescence
level. The rate of fluorescence increase represents the
rate of conversion of the ROS sensor, which in turn
reflects the rate of free radical production in the cells.

Methods

Initial selection of fluorescent ROS sensors

Selection criteria

The selection of fluorescent sensors for this study was
based on published literature, especially the review articles
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by P. Wardman(Wardman 2007) and by A. Gomes and
co-authors(Gomes et al. 2005) and the study on fluores-
cence probes of hydroxyl radical by Cohn and co-authors
(Cohn et al. 2008). For initial testing of sensitivity towards
x-ray radiation in solution form, we used the following in-
clusion criteria to select the fluorescent dyes : 1. The dye
is commercially available; 2. It is directly activated by one
or more of the free radical products of water radiolysis
without the need for an intermediary; 3. To ensure that
we observe free radical production in the intracellular vol-
ume, the pre-activated form can diffuse into intracellular
space; 4. Both the pre-activated and activated forms
should be sequestered in the intracellular space and not
leak out into the extracellular medium.

Based on these criteria, six fluorescent dyes were
included in the initial sensitivity measurements against x-
ray radiation. A list of their names, abbreviations, peak ex-
citation/emission wavelengths, and the fluorescent forms
upon reaction with free radicals is given in Table 1.

All six dyes come in reduced, non-fluorescent forms.
Upon oxidation by free radicals, they are converted to
stable fluorescent forms that can be detected by fluores-
cence spectrometry and microscopy. Since the initial
non-fluorescent forms are susceptible to oxidation by
UV light and spontaneous free radical formation in solu-
tions, it was necessary for us to do all experimental pro-
cedures under low, red lights and avoid prolonged
storage of the dyes in solution form.

Fluorescence spectrometer measurements

The sensitivity measurements were performed in solu-
tion using a Jobin Yvon fluorescence spectrometer
(Model FL-1039, HORIBA Scientific) or a laser scan
fluorescence microscope (Zeiss LSM410, Carl Zeiss Mi-
croscopy Inc.). The x-ray source was a compact tungsten
anode tube (SB-80-500, Source-Ray Inc.) operating at 20
Watts/80 kVp/0.5 mA. Dye solutions of 100 M concen-
tration were prepared in the appropriate buffers (Add-
itional file 1).

For the spectrometer measurements, each dye solution
was exposed to three 10-second periods of x-ray radi-
ation, corresponding to accumulated doses of 0.5, 1.0
and 1.5 Gy. Fluorescence emission spectra were acquired

Table 1 Fluorescent ROS sensors included in initial sensitivity measurements towards x-ray radiation

Name Abbreviation

Peak excitation/Emission wavelength (nm)

Fluorescent form

2',7-dihydrodichlorofluorescein diacetate H,DCFDA
Dihydrofluorescein DHF

Dihydrorhodamine 123 DHR-123
Aminopheny! Fluorescein APF
Hydroethidine HE
Dihydroresorufin Amplex Red

501/521 Dichlorofluorescein
494/521 Fluorescein
507/529 Rhodamine 123
494/521 Fluorescein
473/610 Ethidium

571/585 Resorufin
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before the x-ray exposure and after each exposure
period. Fluorescence intensity was calculated as the sum
of the intensity under the emission peak. The amount of
fluorescence increase per Gy of radiation was quantified
by linear regression of the fluorescence intensity vs. dose
curve. For the purpose of comparing dyes of different
emission spectra, we measured the fluorescence intensity
of the oxidized (fluorescent) form of each dye at the
same concentration. The fluorescent forms of the dyes
are given in Table 1.

Finally, the normalized sensitivity of each fluorescent
sensor to x-ray irradiation was defined as the percentage
of the non-fluorescent form of the dye that are con-
verted to the fluorescent form by the exposure dose of
1 Gy. This quantity is given by the ratio (Fluorescence
increase per Gy)/(fluorescence of the fluorescent form of
the dye). Since this value is dependent on the dye con-
centration in the solution, it was important to use the
same concentration for all dyes.

Each spectrometer measurement was repeated three
times in separate samples.

Fluorescence microscopy measurements of Dye solutions
The sensitivities of the fluorescent ROS sensors 2,7’-
dihydrodichlorofluorescein diacetate (H,DCFDA) and
dihydrofluorescein (DHF) were compared using a laser
scanning fluorescence microscope (Zeiss LSM410). Tests
were done in dye solutions of 100 uM concentration.
Since H,DCFDA is not reactive to free radicals until the
diacetate group is cleaved (by intracellular esterase
enzymes for example), we used a chemical process to
cleave the diacetate group when preparing the solution
(see Additional file 1). The solutions were loaded into
sample wells, which were made by attaching 0.1 mm
thick double-adhesive ring spacers (Electron Microscopy
Sciences) on No. 0 glass coverslips. Eight pL of solution
was loaded into a well and sealed on top with another
No. 0 coverslip, then placed on the microscope stage for
imaging.

The microscope was a modified inverted laser scan-
ning confocal fluorescence microscope (Figure 1A). The
condenser optics were removed to allow the x-ray tube
to be placed over the sample stage. The distance be-
tween the focal spot of the x-ray tube and the sample
plane was 41 mm. When the x-ray tube operated at its
maximum output of 80 kVp/0.5 mA, the radiation dose
rate on the sample was 3.0 Gy/min, as measured with a
dosimeter (TANDEM dosimeter, PTW-Freiburg, Ger-
many). The dosimeter was factory calibrated for x-ray
CT scanners operating at various generator input vol-
tages. Specifically, we placed the air ionization chamber
of the dosimeter at the same distance from the x-ray
source as the sample stage, and obtained a dose rate
readout while running the x-ray tube at the experimental
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condition. The readout represented the equivalent radi-
ation absorption dose rate in typical soft tissue, which is
the amount of absorbed energy per gram of tissue per
minute (1 Gy/min is equivalent to 1 milli-joule/g/min).
Since our aqueous samples had approximately the same
density as soft tissue, the dosimeter readout was used
for the radiation absorption dose rate in the sample.
This dose rate was applied to all microscopy experi-
ments, including solution samples and cell samples.

In each x-ray test, a series of fluorescence images at
488 nm excitation were taken before and during x-ray
exposure. Each image took 1-2 seconds to acquire and
the interval between images was 30 seconds. For each of
the two fluorescent sensors, the experiment was
repeated three times in separate samples.

Cell imaging

Preparation of cell samples

Based on the sensitivity measurements performed in
solutions, one of the 6 fluorescent ROS sensors,
H,DCFDA, was chosen for cell imaging. Mouse embry-
onic fibroblast (MEF) cells were cultured in Dulbecco’s
Modified Eagle Medium (D-MEM) in 75 cm?® cell cul-
ture flasks (see Additional file 1). In preparation for an
experiment the cells were seeded on glass-bottom dishes
(35 mm diameter petri dish with 14 mm micro well of
No. 0 coverglass bottom, MatTek Corporation) and
incubated overnight (see Additional file 1). The glass-
bottom dishes are suitable for imaging on inverted
microscopes. On the day of the experiment the dishes
were removed from the incubator and confluency
checked with a light microscope. The H,DCFDA dye
was loaded into the cells by the following procedure: the
culture medium in the dishes was aspirated and the cells
were washed with Dulbecco’s phosphate-buffered saline
(DPBS); freshly prepared 100 pM H,DCFDA solution
(see Additional file 1) was added to the dishes and incu-
bated for 30 minutes; the dye solution was aspirated
from the dishes, followed by washing with DPBS to re-
move residual dye in the medium; the cells were further
incubated in DPBS buffer for 30 minutes to allow cellu-
lar esterases to hydrolyze the acetate groups and make
the dye responsive to oxidation. The dishes were kept in
dark condition to prevent photo-oxidation of the dye.

Imaging free radical formation in cells under X-Ray

The glass-bottom dishes containing the cells were
loaded onto the stage of the modified confocal micro-
scope (Figure 1A), directly under the window of the
x-ray tube. An issue that needed attention was the at-
tenuation of the x-ray beam by the layer of buffer
medium above the cells, as the cells adhered to the glass
bottom of the dishes. A dish contained 1.5 mL of DPBS
buffer, which amounted to a layer thickness of 2.0 mm over
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Figure 1 lllustration of the modified confocal fluorescence microscope for imaging x-ray generated free radicals in live cells. (a) The
Zeiss LSM410 microscope was modified by removing the condenser optics and tilting back the condenser column (contact switch disabled) to
allow the x-ray tube to be positioned over the sample stage. The microscope’s mercury lamp was used for UV illumination. All cell experiments
used a 20X objective. (b) The custom sample stage minimizes attenuation of the x-ray beam by the buffer medium above the cells while
maintaining the volume of the medium. The stage consists of a glass-bottom petri dish suitable for inverted microscopes, and a dip cup above
the glass bottom of the dish that serves as a window for the x-ray beam. The dip cup has a membrane bottom of 30 um Kapton film. The layer

of buffer medium between the membrane and the cells is 0.4 mm.

the cells. The solution to this problem is shown in
Figure 1B. An x-ray window was created above the micro
well of the dishes using a dip cup with a membrane bot-
tom. The dip cup was made of Teflon and the membrane
was a 30 pm layer of Kapton. The cup reduced the thick-
ness of the buffer layer beneath the x-ray window to
0.4 mm, while maintaining contact between the cells and
the bulk of the buffer medium.

Fluorescence imaging was performed at ambient 21°C
temperature, with 488 nm laser excitation and 20X ob-
jective. The microscope was programmed to take fifteen

images in a time series, with 30 seconds interval be-
tween each image. The x-ray tube was switched on at 5
seconds after the fifth image, and remained on during
the rest of image acquisition (5 minutes). Experiments
on five separate samples were carried out. Four of the
five samples contained sufficient number of cells in the
field of view and were used for data processing.

The Image] software was used for data processing.
The processing procedure included creating a mask of
the cells and finding the average image intensity within
the mask as a function of time. The cell mask was
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created in two steps. First the average of the first 5
images prior to x-ray exposure was calculated as a
before-exposure image. Then, the difference between the
last image taken after 5 minutes of exposure and the
before-exposure image was calculated. An intensity
threshold was applied to the difference image, resulting
in a mask that only contained the cells. The mask was
then used to calculate the average fluorescence intensity
in the cells for each image in the time series. We call
this quantity the cellular fluorescence intensity.

Since x-ray induced free radical formation includes the
initial, physical products of radiolysis and subsequent sti-
mulated production of free radicals by the biological
mechanisms of the cells (Leach et al. 2001; Spitz et al.
2004), we are interested in the change of the rate of free
radical formation over the time course of radiation. For
this purpose we calculated the rate of increase of the cel-
lular fluorescence intensity, which was defined as (differ-
ence of cellular fluorescence intensity between two
consecutive images)/(time interval between the two
images). The rates at three time points were calculated —
before radiation, at the onset of radiation and at 5 minutes
of radiation. The rate before radiation was calculated from
the first 5 images before the x-ray tube was switched on.
The rate at the onset of radiation was calculated between
images No. 5 and 6, during which time the cells received
the first 1.3 Gy of radiation. The rate at 5 minutes of radi-
ation was calculated between images No. 14 and 15, after
the cells had received 13.3 Gy of radiation.

Imaging free radical formation in cells from UV light
As a reference for the above x-ray experiments, we also
observed free radical formation in cells that received 5
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Figure 2 Sensitivity of 6 fluorescent ROS sensors toward x-ray
generated free radicals in solution. The measurements are for
100 uM solutions. The values are the percentage of the initial non-
fluorescent form of the dye that are converted to the fluorescent
form by the exposure dose of 1 Gy.
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minutes of mercury lamp illumination. The cell samples
were prepared following the same protocol as the x-ray
experiments. A confocal fluorescence image was acquired
immediately before the mercury lamp was switched on.
Then the cells were illuminated for 5 minutes, and a
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Figure 3 X-ray induced fluorescence increase in 100 pM
solutions of de-esterified H2DCFDA, DHF, and de-esterified
H2DCFDA + 1 mM ascorbate (free radical scavenger). (a) Time
series of fluorescence images were acquired on the modified
confocal microscope (Figure 1). The interval between images was 30
seconds. For the first two solutions the x-ray tube was switched on
after image No.5, and persisted to the end of the time series. An
immediate rise of the fluorescence intensity can be seen in the de-
esterified H2DCFDA solution, while a smaller response was seen in
the DHF solution. For the de-esterified H2DCFDA + ascorbate
solution the fluorescence over 5 minutes of x-ray exposure was
recorded. (b) The average increase of fluorescence intensity per unit
dose of x-ray exposure was calculated for the 3 solutions from 3

separate samples for each dye. The error bars are standard deviation.




Rappole et al. Optical Nanoscopy 2012, 1:5
www.optnano.com/content/1/1/5

second fluorescence image was acquired. A total of 8 sep-
arate samples were studied.

For image processing, a cell mask was generated based
thresholding the difference image before and after illu-
mination, as described in the previous section. The mask
was used to calculate the average increase of cellular
fluorescence intensity from mercury lamp illumination.

Results and discussion
In the following sections all values are presented as
mean * standard deviation.

Comparison of sensitivity to X-Ray radiation in 6
fluorescent ROS sensors

As described in the subsection of “Materials and Meth-
ods - Initial Selection of Fluorescent ROS Sensors —
Fluorescence Spectrometer Measurements”, the normal-
ized sensitivity is measured in 100 pM dye solutions as
the percentage of the non-fluorescent form of the dye
that are converted to the fluorescent form by the expos-
ure dose of 1 Gy. The results of 6 fluorescent sensors
are graphed in Figure 2.

The sensitivities of two analogous dyes, de-esterified
H,DCEDA and DHE, were compared by fluorescence
imaging of 100 pM solutions as described in the subsec-
tion of “Materials and Methods - Initial Selection of
Fluorescent ROS Sensors — Fluorescence Microscopy
Measurements of Dye Solutions”. Figure 3A shows the
time course of fluorescence intensity before and during
radiation. A linear rise of fluorescence intensity was seen
immediately after the x-ray beam was switched on. To
confirm that the dye conversion was mediated by free
radicals, we also tested de-esterified H,DCFDA solutions
with 1 mM ascorbate (Vitamin C) which is a free radical
scavenger. The fluorescence level was significantly
depressed with the presence of ascorbate. The increase
of fluorescence intensity per Gy of radiation for de-
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Figure 5 Average cellular fluorescence intensity in MEF cells
over the time course of 7 minutes. The data from the four
experiments are graphed. The Fluorescence intensities were
obtained from time series (Additional file 2) taken on the modified
confocal microscope (Figure 1) at 30 second intervals. The MEF cells
were loaded with the fluorescent ROS sensor H,DCFDA. The X-ray
tube was turned on after the 5™ image and stayed on till the end of
the series. Cells were kept at room temperature (21 °C) during
imaging. The fluorescence intensity was nearly constant before
radiation, immediately rose upon onset of the x-ray beam, and
increased at accelerating pace over the course of radiation. The

radiation dose rate was 3.0 Gy/min.

esterified H,DCFDA with and without ascorbate and for
DHEF are graphed in Figure 3B.

From the above results we concluded that among this
group of ROS sensors, H,DCFDA and DHR-123 had the
highest sensitivities to x-ray radiation. However, DHR-
123 is oxidized to rhodamine 123 upon reaction with
ROS, and rhodamine 123 is known to be cationic and

rate was 3.0 Gy/min.

Figure 4 The first and last fluorescence images from a time series of live MEF cells taken before and during x-ray radiation. Many cells
are visible in the field of view. The images are left) before the x-ray beam was switched on; right) at 5 minutes of exposure. The exposure dose
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Figure 6 Determination of the rate of increase of cellular
fluorescence level at three points in the time series of Figure 5.
The time series are confocal fluorescence images acquired before
and during x-ray radiation (Additional file 2). (@) In a typical time
series, the rates of fluorescence increase are illustrated by the green
straight segments. The rate prior to the on-switch of the x-ray beam
was calculated from the slope of the first 5 images. The rate at the
onset of x-rays was calculated from the increase between the 5™
and 6™ images. The rate at 5 minutes of radiation was calculated
between the 14" and 15" images. (b) The average and standard
deviation of the rates of fluorescence increase are graphed for the
three time points, among four separate experiments.

collects in mitochondria due to the driving force of
membrane potentials. This type of migration and redis-
tribution may introduce changes of fluorescence inten-
sity that are not related to the formation of free radicals.
For this reason, H,DCFDA was chosen for further cell
imaging experiments.
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Dynamic imaging of free radical formation in cells under
X-Ray
A movie of the time series of fluorescence images over a
period of 7 minutes is uploaded as supplemental material.
The time period included 2 minutes before the x-ray
source was switched on and 5 minutes of x-ray irradiation.
The fluorescence level in the cells remained low before ra-
diation, and increased steadily during radiation. Represen-
tative images before and at the end of the radiation period
are shown in Figure 4. The time course of the cellular
fluorescence intensity is plotted in Figure 5 for the four
separate experiments. The fluorescence intensity was
nearly constant before radiation, immediately rose after
the on-switch of the x-ray tube at image No. 5, and
increased at accelerating pace over the course of radiation.
The rate of increase of the cellular fluorescence inten-
sity at three time points is graphed in Figure 6. We
observed a slightly positive rate of (6.4+1.1) x 107 sec™
during the 2 minute period before the x-ray was turned
on. At the onset of radiation, the initial rate of fluores-
cence increase varied between 7.5x107 sec’ and
8.7 x 107 sec’’ among the 4 experiments, with the aver-
age value of (8.2+£0.5) x 102 sec’’. At the end of 5 min-
utes of radiation, the rate of increase has risen to 4.3
times the initial rate.

Comparison of cellular fluorescence between X-Ray and
UV light exposures

The total increase in cellular fluorescence intensity from
5 minutes of x-ray exposure was comparable to that

80 -
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Increase in Cellular Fluorescnece (arb.)

5 min of x-ray 5 min of mercury lamp
Exposure Source

Figure 7 The increase of cellular fluorescence from 5 minutes
of x-ray exposure vs. 5 minutes of UV exposure from the
mercury lamp of the microscope. Four separate samples were
studied in the x-ray exposure and 8 in the mercury lamp exposure.

Average and standard deviations are shown.
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from 5 minutes of UV light exposure using the mercury
lamp of the microscope. Figure 7 shows the results for
both types of exposure. Based on the mean of both
results, the increase of cellular fluorescence from the x-ray
tube was 76% of that from the mercury lamp.

Conclusions

We demonstrated dynamic imaging of the immediate
free radical products of x-ray absorption in live cells
using the fluorescent ROS sensor H,DCFDA. We
observed a low and near-constant level of fluorescence
in the cells without radiation, an initial positive rate of
increase at the onset of radiation, and a higher rate of
increase at 5 minutes of radiation. These results are con-
sistent with the notion that the initial rate of fluores-
cence increase corresponds to the immediate free radical
products of x-ray ionization events in the cell medium,
and the higher rates after a few minutes of radiation
includes contributions from both the immediate pro-
ducts of radiolysis and the activation of cellular mechan-
isms that produce their own reactive oxygen species
(Leach et al. 2001; Spitz et al. 2004). The conclusion that
we were able to image the initial products of x-ray radi-
olysis was also supported by the fluorescence imaging
results in the solutions of the dyes, where biological pro-
duction is absent.

We showed that several commercially available fluor-
escent ROS sensors had varying degrees of sensitivity to-
wards of x-ray radiation. Among these, DHR-123 and
H,DCEDA had the highest sensitivities. A number of
published papers have shown success using H,DCFDA
or its derivatives to detect radiation-induced ROS forma-
tion in cells(Leach et al. 2001; Morales et al. 1998; Nar-
ayanan et al. 1997; Wan et al. 2003). Our results are
consistent with these prior studies.

It is worth noting that due to the low power rating of
20 Watts of our compact x-ray tube, exposure times of
many seconds were necessary to accumulate sufficient
dose to cause a visible rise in the fluorescence level. The
output spectra of tungsten-anode x-ray tubes have been
measured by Bhat and co-authors for several generator
input voltages(Bhat et al. 1998). At 80 kVp input the
spectrum peaks at 32 keV and The spectrum peaks at
32 keV and has a full width at half maximum (FWHM)
of 30 keV. Knowing the mass absorption coefficient of
typical soft tissue at 32 keV (0.34 cm?/g) and the absorp-
tion dose rate at the sample, we estimated the radiation
flux density at the sample to be 4.9 x 10” joule/cm®/sec.
If we consider that the mass absorption coefficient varies
widely over the spectrum of the x-ray tube and is
weighted more towards the higher values of lower pho-
ton energies, the actual flux density at the sample is
likely lower. In comparison, the focused x-ray nano-
beams at synchrotron sources and even dedicated
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laboratory microbeams are 3 — 10 orders of magnitude
more intense. Therefore, these sources should permit
rapid scanning experiments.

For the ultimate purpose of developing a microscopy
method based on real-time imaging of the free radical
products of a scanning x-ray nanobeam, both H,DCFDA
and DHR-123 are possible candidates. In this context,
there are several topics that warrant further research.
First, the conversion of the dyes to fluorescent forms by
free radicals is irreversible. The advantage of this feature
is that transient events such as pulsed x-ray exposures
produce permanent effects. However, the disadvantage is
that each fluorescent sensor molecule can only be used
once. Since the location of a single switching event can
be anywhere within the x-ray beam profile, irreversible
fluorescent sensors limit the imaging resolution to the
size of the x-ray beam plus additional broadening of a
few nanometers due to the diffusion of the free radicals.
Developments in reversible redox-switched fluorescent
proteins (Hanson et al. 2004; Ostergaard et al. 2001)
may lead to reversible free radical sensors that are free
from this limitation.

Another consideration is that all of the fluorescent
dyes we tested are freely diffusible. This allows them to
enter the intracellular space, but they are not suitable
for labeling specific structures. Future work may include
searching for bound forms of free radical sensors in
addition to developing the methodology of free radical
imaging with a scanning x-ray beam.
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cells were pre-loaded with the ROS sensor H2DCFDA.
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