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Abstract

We have imaged the three-dimensional density distribution of unstained and unsliced, freeze-dried cells of the
gram-positive bacterium Deinococcus radiodurans by tomographic x-ray propagation microscopy, i.e. projection
tomography with phase contrast formation by free space propagation. The work extends previous x-ray imaging of
biological cells in the simple in-line holography geometry to full three-dimensional reconstruction, based on a fast
iterative phase reconstruction algorithm which circumvents the usual twin-image problem. The sample is illuminated
by the highly curved wave fronts emitted from a virtual quasi-point source with 10 nm cross section, realized by two
crossed x-ray waveguides. The experimental scheme allows for a particularly dose efficient determination of the 3D
density distribution in the cellular structure.
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Background
Optical nanoscopy based on visible light fluorescence is
becoming an important tool for three-dimensional imag-
ing of biological cells at the nanoscale. However, not
all biological problems can be addressed based on the
distribution of fluorescence markers. In many instances
additional and complementary contrast mechanisms are
needed. The mass density distribution within native
unstained and unsliced biological cells and tissues is such
a case in point. To this end, coherent x-ray imaging
and tomography offers a unique potential for quantita-
tive three-dimensional (3D) density determination at scal-
able resolution (Cloetens et al. 2006; Huang et al. 2009;
Lima et al. 2009; Nishino et al. 2009; Shapiro et al. 2005;
Song et al. 2008). The distribution of density contrast in
the sample is obtained from quantitative phase recon-
struction schemes ((Nugent 2010; Paganin 2006), and ref.
therein), along with the reconstructed volumes, shapes
and topologies. The density based contrast mechanism
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equips biophysical research with a non-destructive ’ultra-
centrifuge’ at the organelle and supra-molecular level.
In other words, quantitative mass density measurements
and density based discrimination, which is important in
many biological applications, but typically associated with
destructive separation of components, can be performed
non-destructively. Important problems associated with
sub-cellular architecture, as for example DNA compact-
ification can thus be addressed. However, for biological
samples the applied dose is a crucial parameter in view
of structural changes and radiation damage during the
imaging process, inhibiting live cell imaging and creat-
ing a need for fixation. Moreover, radiation damage of
samples is considered to be the ultimate limitation in x-
ray microscopy, if resolution due to the characteristics of
sources, optical components, reconstruction algorithms
and detection is successfully scaled down (Howells et al.
2009). Therefore, minimizing the dose for a given image
resolution and contrast is a primary challenge for x-ray
optics.
Here we present a 3D tomographic reconstruction

of unstained freeze-dried cells of the gram-positive
bacterium Deinococcus radiodurans using hard x-rays
(13.8 keV photon energy). The total dose applied during
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the tomographic scan was about 1.6·105 Gray ([GY=J/kg]),
corresponding to 1.9 · 103 Gy per projection, which is
several orders of magnitude below the values reported in
previous x-ray coherent diffractive imaging (CDI) stud-
ies of D. radiodurans (Lima et al. 2009; Giewekemeyer
et al. 2010; Wilke et al. 2012). Despite the low dose, phase
reconstruction based on recorded holographic intensities
was not hampered by noise, primarily due to two reasons:
(i) the use of a highly coherent beam with curved wave-
fronts (Salditt et al. 2011), emitted by a quasi-point source
with 10 nm cross section, realized by a 2D x-ray wave-
guide system (Krüger et al. 2010, 2012), and (ii) a robust
and quickly converging iterative reconstruction scheme
which takes photon noise effects into account quantita-
tively (Giewekemeyer et al. 2011). The electron density
distribution and an effective mass density distribution of
the cellular structure was extracted quantitatively from
the reconstructed 3D phase information. Density contrast
may help to understand the bacterium’s extraordinary
resistance to high doses of ionizing radiation based on
the structural arrangement of its nucleoid (Eltsov and
Dubochet 2006a, 2006b; Minskey et al. 2006). Coherent
x-ray imaging was previously used to derive the pro-
jected electron density of D. radiodurans (Giewekemeyer
et al. 2010), providing thus a contrast mechanism com-
plementary to electron microscopy studies (Eltsov and
Dubochet 2005; Levin-Zaidman et al. 2003). The data
was recorded by scanning a micron-sized x-ray beam
over the sample, followed by reconstruction of the far-
field diffraction patterns, yielding the super-resolution
real space projection image. The reconstruction algo-
rithm used was based on the a priori knowledge of
partial overlap between adjacent images, reducing the
number of unknown variables, an approach denoted by
ptychography (Dierolf et al. (2010)). In order to obtain
the locally resolved electron and mass density rather
than just projected values, we here extend this work
from 2D to 3D.
However, instead of ptychographic tomography which

involves scanning two translations and one rotation with
correspondingly large overhead time (Dierolf et al. 2010;
Wilke et al. 2012), in this work we use x-ray propa-
gation microscopy, i.e. projection imaging with contrast
formation by free space propagation (Cloetens et al. 1999;
Wilkins et al. 1996). In our view, replacing the (Fraun-
hofer) far-field recording with a magnified (Fresnel) near-
field setting (Giewekemeyer et al. 2011, Mokso et al. 2007)
has the following advantages: (i) The near-field pattern
directly represents location and shape of the object, so
that object support and position in the beam can be read-
ily located, giving useful a priori knowledge. (ii) Current
detector technology is better exploited due to homoge-
nous signal level. Furthermore, (iii) a high dose efficiency
is gained by interference of the weak diffracted wave with

the much stronger primary wave as demonstrated experi-
mentally in this work. Finally, (iv) in view of 3D imaging,
a full field approach based on scanning only one degree
of freedom (rotation axis) produces less overhead time in
data acquisition and imposes less restrictive requirements
on mechanical accuracy and longterm vibrational stabil-
ity. However, shaping a highly coherent beam with curved
wavefronts is a major challenge in propagation imaging.
By using x-ray waveguides the well-known problems of
empty beam correction and geometrical distortions asso-
ciated with hard x-ray focusing optics (Mokso et al. 2007)
can be solved (Giewekemeyer et al. 2011).

Methods
Figure 1 shows a schematic of the experiment performed
with the Göttingen Instrument for Nano Imaging with
X-rays (GINIX) installed at the coherence beamline P10
of the new storage ring PETRA III at Hasylab, DESY
(Kalbfleisch et al. 2011; Salditt et al. 2011). The undulator
beam was monochromatized by a Si(111) double crystal
to 13.8 keV and then focused by two Kirkpatrick-Baez
(KB) mirrors polished to fixed elliptical shape, yielding
a focus size of Dhorz = 370 nm and Dvert = 200 nm
full width at half maximum (FWHM), as measured by
scanning x-ray waveguides horizontally and vertically
through the beam. The total flux was 2.4 × 1011 counts
per second at 70 mA ring current, as measured by a
pixel detector (Pilatus, Dectris) positioned at 5.29 m in
the widened far-field of the KB beam. The waveguide
(WG) system was positioned in the focal plane of the KB
mirror, using a miniaturized fully motorized goniome-
ter with optical encoders (Attocube). Alignment of the
waveguide as well as the sample mounted on a dedicated
tomography stage was facilitated by use of two on-axis
optical microscopes, one directed downstream and one
upstream with the beam, see Additional file 1 for details.
Two different single photon counting pixel detectors,
with 172 μm (Pilatus, Dectris) and 55 μm (Maxipix) pixel
size were used. The waveguide system consisted of two
crossed planar waveguide slices, each with a transmission
optimized sputtered thin film sequenceGe/Mo/C/Mo/Ge,
with 35 nm amorphous C as the guiding layer (Krüger
et al. 2010, 2012; Salditt et al. 2011). Note that due to
grazing angles, the guiding layer width of 35 nm corre-
sponds to only two propagating modes in the waveguide.
Absorption of radiative modes in the cladding then
results in a strong damping of all radiation except of
the two fundamental modes. Finally, the interference of
the modes can lead to a an effective beam width which
is substantially smaller than the guiding layer thickness
(Krüger et al. 2012). The small exit beam width of the
waveguide beam is evidenced by the large divergence
angle of its far-field intensity distribution, measured with
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Figure 1 Experimental setup. (a) A monochromatic x-ray beam is focused by two KB mirrors onto the system of two crossed planar waveguides
(WG) with a layered guiding core structure for optimized transmission. The sample (for an optical mircograph of the cells, see inset) is placed at a
distance z1 behind the WG exit. The area pixel detector is placed at a distance z2 � z1 away from the sample to collect the diffraction pattern. (b)
Logarithmic far-field intensity distribution of a 15 keV beam exiting the waveguide (scale bar 0.02 Å−1, 100 second dwell time), measured with a
pixel detector (Pilatus) at a distance of 5.29 m behind the focus. The small focal width of the waveguide beam is evidenced by its large divergence
angle, the relatively homogenous intensity distribution well suited for imaging (dashed rectangle) has a divergence angle of 5 mrad. (c) The
near-field intensity distribution in the effective focal plane is obtained by inverting the diffraction pattern with the error reduction algorithm, shown
in logarithmic scale, scale bar 20 nm. (d) Gaussian fits of the central peak along the horizontal and vertical direction give a width of 10 nm × 9.8 nm
(FWHM), respectively.

a pixel detector (Pilatus) at a distance of 5.29 m behind
the WG (data shown in Figure 1(b), recorded at 15 keV
photon energy). The relatively homogenous part of the
waveguide far-field intensity distribution (dashed rect-
angle in Figure 1(b)) is well suited for imaging and has
a divergence angle of 5 mrad. The near-field intensity
distribution in the effective focal plane is obtained by
inverting the diffraction pattern using the error reduc-
tion algorithm (Krüger et al. 2010, 2012 (see Figure 1(c)).
Gaussian fits of the central peak along the horizontal
and vertical direction give a width of 10 nm × 9.8 nm
(FWHM), respectively (see Figure 1(d)). Cells of the
Deinococcus radiodurans wild-type strain were cultivated
from freeze-dried cultures (DSM No. 20539 by the Ger-
man Collection of Microorganisms and Cell Cultures),
suspended on Si3N4-foils (Silson) with 1 μm thickness
and 5 × 5 mm2 lateral dimensions, shock frozen by
cryogenic fixation in ethane (cryo-plunging), and subse-
quently freeze dried, see Additional file 1 for details. To
record projection propagation images in full field mode

the sample (for an optical micrograph of the cells, see
Figure 1(a)) was placed at a (defocus) distance z1 = 8
mm from the WG exit plane, where the divergent WG
beam has broadened to a field of view (FOV) of 40 ×
40 μm2, as calculated from the measured far-field diver-
gence angle of 5 mrad. As shown previously, the imaging
experiment can then be described in a well-known
equivalent parallel-beam geometry (Mayo et al. 2002;
Fuhse et al. 2006) with a demagnified (effective) detector
pixel size of �D/M and a (de)magnification factor of
M = (z1 + z2)/z1 as well as an effective sample-detector
distance zeff = z1z2/(z1 + z2) = z2/M. Note that here
z2 � z1, so that zeff � z1 = 8 mm and M � z2/z1 = 660,
resulting in an effective detector pixel size of � 83 nm.
For 3D imaging, 83 projection images Iφ were collected
over 162 degrees with a total exposure time of 10 min-
utes for each angle φ, distributed over N = 15 detector
accumulations, which were subsequently corrected for
lateral drift by cross-correlation methods with sub-pixel
accuracy (Guizar-Sicairos et al. 2008). The total fluence
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for each projection was � 4.38 · 106 photons/μm2, corre-
sponding to a dose of � 1.9 ·103 Gy, based on calculations
presented in (Howells et al. 2009). Next, the normalized
intensity distribution was calculated as Īφ(x, y) = Iφ/I0
by division with the empty beam intensity distribution
I0(x, y), followed by a filtering of residual low frequency
variations, see Additional file 1 for details on image
processing and filtering. Based on the projection approx-
imation, the measured signal at the detector normalized
by the empty beam intensity distribution, described
in the equivalent parallel-beam geometry is then
given as

Īφ(x, y) = |Dzeff [χ(x, y)] |2 , (1)

whereDzeff denotes the two-dimensional Fresnel propaga-
tor over the distance zeff along the optical axis and χ(x, y)
the sample transmission function (Giewekemeyer et al.
2011). Backpropagation of Eq. (1) leads to a single-step
holographic reconstruction of the normalized intensity
Īφ(x, y), which is however intrinsically spoiled by the so-
called twin-image. As presented previously in Gieweke-
meyer et al. (2011), a significant improvement of the
reconstruction can be achieved by application of a modi-
fied version of the Hybrid-Input-Output (HIO) algorithm
(Paganin (2006)) well suited for pure phase objects. Note
that the HIO algorithm is a classical iterative algorithm,
which cycles between reciprocal space and real space. In
reciprocal space, the measured information is fed in, and
in real space, additional ‘real space’ constrains are applied,
which in many cases leads to convergence towards the
solution which satisfied both constraints. Most common
a priori knowledge in real space is based on support
information, i.e. in which region of the illuminated area
the sample is positioned and/or amplitude constraint, i.e.
knowledge about the amplitude of the object, for exam-
ple when absorption can be neglected. According to the

HIO version published in Giewekemeyer et al. (2011), the
real space upgrade consists of two constraints, one for the
amplitude, and one for the phase of the wave, as specified
by the following two equations. The update of the current
amplitude |χn| is given by

|χn+1| = |χn| − β · (|χ ′
n| − 1

)
, (2)

as proposed in Gurevey (2003). Secondly, a phase con-
straint is included in the iteration, namely,

ϕ(χn+1(x, y))

=
{

ϕ(χn(x, y)) − γ · ϕ(χ ′
n(x, y)) ∀(x, y) /∈ S

min{ϕ(χ ′
n(x, y)), 0} ∀(x, y) ∈ S.

(3)

|χ ′n| denotes the amplitude of the n-th iterate after appli-
cation of the detection plane constraint, i.e. χ ′n :=
PM(χn) with PM(χn) = D−zeff [

√
Ī · exp(iϕ(χ̃n))] denoting

the modulus replacement operation in the detection plane
and ϕ(z) := arg(z) for any complex number z ∈ C. The
amplitude constraint (2) slowly pushes |χn| towards 1 and
the phase constraint (3) causes a gentle decrease of the
phase to a constant C (C = 0 was chosen here) in the area,
where no object is located. The phase inside the support
area S ⊂ R

2, however, is left untouched, as long as it is not
larger than C, allowing for phase changes �ϕ(x, y) in one
direction only, as expected for objects with |�ϕ(x, y)| <

π . The speed of convergence is determined by the feed-
back parameters γ ∈[ 0, 1] and β ∈[ 0, 1]. For tomographic
datasets it is crucial to determine the accurate support
area S automatically for each projection, which is achieved
by a thresholding approach, as explained in Additional
file 1.
Before application to a biological sample, suitable test

structures can be used to control the contrast transfer of
the setup at the relevant resolution range. Figure 2 shows
the example of a lithographic pattern consisting of 50 nm

Figure 2 Test structure. (a) Scanning electron micrograph of a 500 nm thick tantalum test structure with 50 nm lines and spaces. (b) Hologram of
the test structure obtained from the normalized intensity distribution recorded during 1 second total illumination time. Effective pixel sizes are 16
nm in horizontal and 11 nm in vertical direction, the field of view is 3.4 μm (h) × 2.2 μm (v). (c) Profile along the black line in (b) together with a
sinusoidal fit yielding a perdiodicity of 100.7 nm, well in agreement with the 50 nm feature size.



Bartels et al. Optical Nanoscopy 2012, 1:10 Page 5 of 7
http://www.optnano.com/content/1/1/10

lines and spaces in a 500 nm thick tantalum layer (NTT-
AT, Japan, model # ATN/XRESO-50HC), see (a) for a SEM
micrograph. The measured hologram (b), after correc-
tion by the empty beam, corresponds to a total field of
view of 3.4 μm (h.) × 2.2 μm (v.). Analysis of line cuts as
shown in (c) shows that sufficient contrast of �I/I � 0.2
is achieved. For the data on the test structure, we have
used a waveguide system with 60 nm amorphous C as
the guiding layer resulting in a total flux of 5 × 108 cps
exiting the waveguide system at 80 mA ring current. The
test structure was positioned at z1 = 1.063 mm. Due
to the sequential arrangement of the crossed waveguide
system the distances from both individual planar wave-
guide slices to the sample differ by 450 μm, which is the
thickness of the second waveguide slice. With the detec-
tor (Maxipix) placed at z2 = 5.36 m the effective pixel side

lengths are � 16 nm in horizontal and � 11 nm in vertical
direction. Note that the resulting anisotropy of effective
propagation distance and sampling along the horizontal
and vertical direction can easily be implemented in the
numerical Fresnel propagation. The total exposure time of
the hologram was 1 second, distributed over 200 detector
accumulations followed by an empty beam recording.

Results
Phase reconstructions of Deinococcus radiodurans for
two different rotation angles θ are shown in Figure 3. They
were obtained by averaging the complex reconstructions
from 50 independent runs of the modified HIO algorithm,
which stopped at an average iteration number of Nit �
2000 and showed a very small distribution of the resulting
phase values with a standard deviation below 5 · 10−4 rad

Figure 3 2D projections of D. radiodurans. Holographic intensity diffracted from freeze-dried D. radiodurans cells at rotation angles (a) θ = 80◦
and (c) θ = 0◦ , normalized by the empty WG far-field intensity distribution. (b,d) Corresponding phase reconstructions obtained with a modified
HIO scheme as described in the main text. The coloring is scaled in rad and also mg/cm2. (e) Angular averaged power spectral density (PSD) of the
phase reconstruction shown in (d) plotted as a blue line, together with the phase-contrast transfer function (PCTF). In comparison to the PSD of a
single-step holographic reconstruction, shown as a red line, the modified HIO scheme recovers spatial frequencies, where the PCTF is zero. A fit of
an exponential power law to the PSD in the interval [0.1,3]μm−1 is shown as a dashed black line. The transition point to the noise plateau, shown as
a solid black line, is at 4μm−1. (f) 2D projection of the tomographic 3D dataset of the cells, obtained by numerical evaluation of line integrals
corresponding to a rotation angle θ = 0◦ .
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in each pixel. The algorithmic feedback parameters were
set to β = γ = 0.2 and an initial guess was generated as
detailed in Giewekemeyer et al. 2011. As described earlier
((Giewekemeyer et al. 2010, 2011), see also Additional
file 1) the reconstructed phase distribution can be
rescaled into a projected electron or, for light biological
materials, mass density map (see additional colorbar scal-
ing in Figure 3) with a density range well in agreement
to what has been found before for cells of D. radiodurans
(Giewekemeyer et al. 2010). Figure 3(e) shows the angu-
lar averaged power spectral density (PSD) of the phase
reconstruction corresponding to θ = 0◦. Fitting the PSD
to an exponential power law in the interval [0.1,3]μm−1,
a transition to the noise plateau is found at 4μm−1,
indicating an upper limit of the obtained (half-period)
spatial resolution at 125 nm. 83 projected effective mass
density maps, reconstructed from data collected at angles

distributed over 162 degrees, were then used to generate
a tomographic 3D effective mass density distribution of
the cellular structure using standard filtered backprojec-
tion. The 2D projections of the tomographic 3D dataset,
obtained by numerical evaluation of line integrals, shown
for θ = 0◦ in Figure 3(f ), illustrate the consistency of the
independent 2D phase reconstructions. In Figure 4(a-c)
different visualizations of the effective mass density dis-
tribution of the cellular structure are shown. Figure 4(d)
shows a histogram of all the voxels interior of the sur-
face defined in (b), corresponding to a cellular volume
of V = 14.8 μm3, with a total mass of 15.8 pg. All the
interior voxels exhibit density values above 0.75 g/cm3,
however distributed in distinct spatial patterns with
density maxima which can be associated with DNA rich
regions. These regions exhibit densities in the range of
1.2 − 1.65 g/cm3.

Figure 4 3D density of D. radiodurans. (a) Direct volume rendering of the 3D effective mass density of freeze-dried D. radiodurans cells. The
coloring indicates densities from 0.8 g/cm3 (blue) to 1.2 g/cm3 (red). (b) Surface rendering obtained by choosing 0.75 g/cm3 as a threshold value.
The cells are shown from above and turned upside-down. The presumed position of the substrate is shown as a dotted rectangle at the bottom,
where the structure of the cells is nearly flat. (c) Combined direct volume rendering (1.15 − 1.25 g/cm3) and surface rendering obtained by clipping
the dataset with a plane. (d) Histogram of the effective mass density inside the surface shown in (b), corresponding to the volume occupied by the
cells. The limits used for direct volume rendering in (a) and (c) are indicated by solid green and dashed red lines, respectively.
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Conclusion
In summary, we have used phase contrast projection
tomography to compute the 3D density distribution in
bacterial cells, showing characteristic density maxima
which we attribute to DNA rich regions. The imaging
and reconstruction method based on near-field prop-
agation or in-line holographic recording is particularly
dose efficient. Application of the method to multi-cellular
organisms and tissues would allow a large field of view
in all spatial dimensions at sub-cellular resolution with-
out the need of staining or slicing. The ability to easily
adapt the field of view and resolution by changing the
defocus distance could be used as a zoom and advanta-
geously combined with region-of-interest (local) tomog-
raphy, which however would imply generalizations of the
phase reconstruction algorithms. With further techno-
logical progress (waveguide transmission, vibrational sta-
bility), resolution can be increased up to the theoretical
limit set by the extension of the quasi-point source used
for illumination, which was 10 nm in the present case.
The result of the 2D test structure, for which a wave-
guide with particularly high flux was available, already
demonstrates that the waveguide setup is in principle well
suited for imaging at a resolution below 50 nm, a field
of view in the range of several microns up to a few hun-
dreds of microns, and one second accumulation time,
paving the way for relatively fast and dose efficient nano-
tomography applications.
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