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Abstract

Diffraction plays a crucial role in microscopy as it prevents the recording of arbitrarily sharp images with conventional
light microscopes. Many names are connected with the notion of diffraction and the definition of resolution. An
overview over the contributions of the different scientists to the recognition and definition of the diffraction barrier in
the past centuries is given and the recent developments that led to breaking this barrier are portrayed.
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Recognizing the diffraction limit
It was long believed that spatial resolution of light micro-
scopes is ultimately limited by diffraction. Ernst Abbe is
perhaps the one who is most often cited for the notion
that the resolution in microscopes would always be lim-
ited to half the wavelength of blue light, because he stated
it saliently. But also many others were aware of the reso-
lution limitation due to diffraction and contributed to its
understanding.
The limiting role of diffraction for microscopy is exten-

sively discussed in the famous work by Ernst Abbe in 1873
(Abbe 1873). Here, the resolution limit for microscopic
images of half the wavelength (of blue light) is explicitly
stated for the first timea.
Abbe considers therefore replacing the eye by a detector

that is sensitive to even shorter wavelengths – at his time
photographic plates – to increase resolutionb.
Abbe describes in words also his famous formula:

dmin = λ/ [2 sin(α)] ,

where dmin is the minimal resolvable distance, λ the wave-
length of the light, and α the half aperture angle of the
microscope’s objectivec; it is left open whether λ refers to
the wavelength in the immersion medium or in air. Abbe
does not discuss explicitly the influence of the refractive
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index in the sample and the immersion medium, though
he does consider immersion objectives.
It is interesting to note that Abbe’s 56-page article does

not contain any formula in mathematical notation. Abbe
sees the microscopic object as consisting of diffraction
gratings. The object diffracts the illuminating light and
only if a sufficient number of diffraction orders passes
the finite-sized objective, the object can be resolved. As
becomes apparent in a later article (Abbe 1880), he did
therefore not recognize that the same resolution limits
also apply to self-luminous objectsd (as used in fluo-
rescence microscopy, which was developed much later).
Nevertheless, in his article from 1873 (Abbe 1873), he
already acknowledges the possibility of new developments
that are not covered by his theory and that might enhance
the possibilities of optical microscopes beyond the limits
that he derivede.
Only one year after Abbe’s first article about the resolu-

tion limit (Abbe 1873) appeared, Hermann vonHelmholtz
published the same resultsf (von Helmholtz 1874). In
contrast to Abbe, von Helmholtz gives a detailed mathe-
matical derivation of his findings. In the last paragraph of
his article he states that he had finished his work before
he became aware of Abbe’s publication and that it seems
acceptable for him to publish his findings in addition to
Abbe’s work for they contained the mathematical proofs,
which were missing in Abbe’s article.
In addition, von Helmholtz tries to illuminate the object

in a way that avoids phase relations at different object
points (i. e. incoherently) by imaging the light source onto
the object. From his theory he concludes that diffraction
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effects should then vanish. He denotes the persistence
of diffraction to the remaining phase relationships in the
object plane. Like Abbe he does not recognize that diffrac-
tion effects would remain even with self-luminous objects
and would hence limit the resolution.
Although the articles from Abbe and von Helmholtz are

the first ones dealing in detail with the resolution limi-
tations of microscopes, the effects of diffraction and its
implication for resolution were known earlier. In 1869
Émile Verdet (1869) seems to be one of the first who
explicitly mention that microscopes are limited in their
resolution by diffractiong,h.
He uses a slightly different separation criterion and

arrives at similar results for resolution as later Abbe and
von Helmholtz, which he derives for the case of telescopes
(i. e. in terms of viewing angle and aperture diameter). He
finds that for circular apertures sinω = 0.819λ/R, where
ω denotes the viewing angle of the first bright ring, λ

the wavelength of the light used and R the radius of the
aperture. He considers 1/(2ω) as the resolution limit.
Detailed experimental tests of Abbe’s theory includ-

ing the demonstration of artifacts in the microscopic
images are published by J. W. Stephenson in 1877
(Stephenson 1877).
Some years later, in 1896, Lord Rayleigh (1896) dis-

cusses extensively the resolution of microscopes. He is
the first to deal with illuminated objects as well as with
self-luminous objects. He also distinguishes between dif-
ferent phase relationships of the illuminated objects. Lord
Rayleigh extends his investigations to different objects
(points, lines, gratings) and different aperture shapes. He
emphasizes the similarities of microscopes and telescopes
and complains about insufficient communication between
physicists and microscopistsi. Already in 1872, he deals
– still under his former name J. W. Strutt – with the
diffraction in telescopes and extends known results to
annular apertures (Strutt 1872), being unaware of an ear-
lier publication by Airy (1841), which also deals with
diffraction at annular apertures, as he states in a post
scriptum. In 1874 Lord Rayleigh investigates the resolu-
tion – also in terms of the “Rayleigh criterion”j – when
imaging gratings (Rayleigh 1874). Here, he states that the
theoretical resolution cannot be obtained for large areas
due to imperfections (spherical and chromatic aberra-
tions) of the available lenses but that it would be possible
with microscope objectivesk.
It is Airy in 1835 (Airy 1835) who calculates for the

first time the diffraction image of a point source when
the limiting aperture is circular in shape. As an example,
he states a star seen through a good telescope. Appar-
ently, Airy considers the case of other aperture shapes so
well known that he only states that the calculation of their
diffraction patterns is never difficult but does not give
further referencesl. Airy does not explicitly state that the

diffraction limits resolution (i. e. the possibility to separate
different stars), but it can be assumed that he was aware of
this fact.
Later, in 1867, W. R. Dawes (1867) addresses the prob-

lem of separating double stars. From his observations
he derives empirically that the angular separating power
scales as 4′′.56/a, where a is the aperture size in inches.
He points out that he had found by observation the inverse
scaling of diameters of star-disks with aperture diameter
about 35 years agom. He, too, does not mention the earlier
work of Airy.
As will be shown below, ways to shift, circumvent and

break the diffraction limit were found later.
Recognizing that broadening of imaged structures is

inevitable due to diffraction is the first step in understand-
ing the resolution of microscopes. The second step is the
finding of criteria to define a structure as “resolved”. These
criteria will be discussed in the following section.

Resolution criteria
The key figure of merit of an optical system is its reso-
lution, i. e. its ability to ascertain an unknown number of
objects or details that give identical signal as distinct enti-
ties. Resolution must not be confused with localization
precision, the ability to determine the exact position of
an object.
Different notions are possible, when two objects should

be regarded as resolved (den Dekker and van den Bos
1997; Ramsay et al. 1941). This is especially critical when
instruments with different PSF (point spread function)
shapes are compared. A common choice is the Rayleigh
criterion, which was published in 1874 (Rayleigh 1874).
Lord Rayleigh regards a structure resolved if the principal
intensity maximum of one diffraction pattern coincides
with the first minimum of the neighboring diffraction
pattern. His choice is made in a time when the human
eye, which cannot resolve arbitrarily small intensity differ-
ences, is the common photodetector.
Schuster states in 1904 that there is something arbitrary

in the Rayleigh criterion as the dip in intensity necessary
to indicate resolution is a physiological phenomenon
(i. e. depends on the ability of the observer’s eye to per-
ceive a weak intensity dip) (Schuster 1904). According
to him, two point sources should only be called resolved,
if no portion of the main lobe of one diffraction pattern
overlaps with the main lobe of the other. This doubles
Rayleigh’s distance.
Sparrow asserts in 1916 with its “undulation condi-

tion” (Sparrow 1916) as the resolution limit the distance
between point objects for which the second derivative of
the composite intensity distribution at the center of the
image just vanishes. This is the ultimate limit for photode-
tectors (replacing the naked eye) that can resolve arbitrary
small intensity differences.
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Houston proposes in 1927 to use the FWHM (full
width at half maximum) of the PSF to quantify resolution
(Houston 1927). Houston’s limit is widely used, because it
is – in contrast to the Rayleigh criterion – also applicable
to diffraction patterns that do not fall off to zero, as in the
case of a Gaussian or Lorentzian profile.
Buxton regards in 1937 two point objects as resolved, if

the diffraction patterns intersect at their inflection points
(Buxton 1937).
All of these criteria assume noise-less images. Quan-

tifying resolution becomes more complex, if noise and
not only incoherent (as in fluorescence microscopy) but
also coherent or partially coherent sources are considered
(den Dekker and van den Bos 1997).

Shifting the diffraction limit
As stated above, Abbe’s diffraction limit amounts for the
shortest wavelength of visible light to about 200 nm for the
lateral resolution. Smaller details cannot be resolved. The
axial resolution is even worse, typically by a factor of three
to four.
A multitude of methods was therefore developed to sur-

pass the resolution limit in light microscopy [For reviews
see e. g. (Heintzmann and Gustafsson 2009; Hell 2007,
2009; Huang et al. 2010; Ji et al. 2008; Lippincott-Schwartz
and Manley 2009; Rice 2007)]:
First, methods to shift or circumvent the diffraction

limit were contrived:
Apodizing (di Francia 1952) can sharpen the central

maximum, but leads to large side lobes, which render
the method impractical (Hell 2007), since for obtaining a
smaller and smaller central maximum an increasing frac-
tion of the total available light flux is redirected to the side
lobes (di Francia 1952).
The optical near field is used for recovering high spa-

tial frequencies, thus resolving fine details, in scanning
probe techniques as SNOM (Scanning Near Field Opti-
cal Microscopy) (Ash and Nicholls 1972; Pohl et al.
1984; Synge 1928) and TERS (Tip-Enhanced Raman Spec-
troscopy) (Anderson 2000; Hayazawa et al. 2000; Kawata
et al. 2009; Stöckle et al. 2000); however, these tech-
niques rely strictly on the close proximity of a probe to
the sample. They are therefore limited to the imaging
of surfaces.
TIRF (Total Internal Reflection) microscopy (Axelrod

1981; Temple 1981) illuminates only a very thin layer
of the sample that is adjacent to the cover slip via an
evanescent field of light. This enables depth discrimina-
tion and background suppression but does not ameliorate
resolution: the method does not allow an enhanced
optical separation of several alike objects. In addition, it
remains limited to imaging structures in the vicinity of the
cover slip.

In a confocal microscope (Minsky 1961), the sample is
scanned with a focused beam of light. The fluorescence
is recorded with a detector behind a pinhole. The pinhole
rejects the out of focus light thereby enabling axial sec-
tioning. The lateral resolution can be increased by up to a
factor ≈1.4 (Gustafsson 1999) under ideal conditions.
4Pi-microscopy (Hell and Stelzer 1992; Hell et al. 1994)

and I2M (Image Interference Microscopy) (Gustafsson
et al. 1995, 1996) increase the effective total aperture by
the use of two opposing objectives, thereby enhancing the
axial resolution.
Various kinds of structured illumination microscopy

(Gustafsson 1999), sometimes combined with TIRF
(Cragg and So 2000; Kner et al. 2009) or with the two-
lens approach, including I3M (Incoherent Interference
Illumination Microscopy) (Gustafsson et al. 1995, 1996),
I5M (the combination of I2M and I3M) (Gustafsson et
al. 1999), I5S (a combination of I5M with laterally struc-
tured illumination) (Shao et al. 2008), SWFM (Standing
Wave Fluorescence Microscopy) (Bailey et al. 1993) and
HELM (Harmonic Excitation Light Microscopy) (Frohn et
al. 2000) use non-uniform illumination of the specimen to
extract high spatial frequencies. Spatial or temporal mod-
ulation of point illumination in SPIN (Scanning Patterned
Illumination) or SPADE (Scanning Patterned Detection)
microscopy (Lu et al. 2009) would enable generalized
structured illumination schemes with two-photon excita-
tion (Denk et al. 1990) or spontaneous Raman scattering
(Lu et al. 2009). ISM (Image ScanningMicroscopy) (Müller
and Enderlein 2010) uses point scanning in combination
with descanned wide field detection.
These methods lead to extended resolution microscopy

(Gustafsson 1999), but not to unlimited resolution
microscopy in the far field. The diffraction limit is not fun-
damentally broken by any of these methods. In all of the
far-field methods, the attainable resolution is limited to a
finite value. They reach a new limit, which is on the order
of a factor of two below Abbe’s value, but they cannot
provide a theoretically unlimited resolution.
Alternatively, one can abandon the advantageous visi-

ble light altogether. Reduction of the wavelength used for
imaging is pursued in UV (Ultra Violet) (Abbe 1873; Brand
et al. 1997) and X-ray microscopy (Kirz et al. 1995; Miao
et al. 2008). Electron microscopy (Ruska 1934; von Borries
and Ruska 1939) provides resolution up to the Angstrom
regime (Ruska 1993), using electrons with a very short de
Broglie wavelength for imaging. Only thin samples or sur-
faces of thick samples can be imaged and the specimen
is placed in vacuum during imaging. Electron microscopy
can be combined with optical fluorescence microscopy
for profiting from the advantages of both techniques
(Cortese et al. 2009). Scanning probe techniques such as
AFM (Atomic Force Microscopy) (Binnig et al. 1986), STM
(Scanning Tunneling Microscopy) (Binnig and Rohrer
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1983) and SICM (Scanning Ion-Conductance Microscopy)
(Hansma et al. 1989) are restricted to imaging surfaces,
but some can reach molecular resolution on biological
samples (Müller et al. 2009).

Breaking the diffraction limit
More than a century after Abbe’s seminal article was
published, the diffraction limit in light microscopy has
been broken by exploiting discernible states of mark-
ers and not only the electromagnetic field of the light:
STED (Stimulated Emission Depletion) microscopy (Hell
and Wichmann 1994) and other RESOLFT (Reversibly
Saturable/Switchable Optical [Fluorescence] Transitions)
techniques (Hell 2004; Hell and Kroug 1995; Hofmann
et al. 2005) provide in theory a resolution without any
optical limit.
After its theoretical description in 1994 (Hell and

Wichmann 1994), STED microscopy was experimentally
demonstrated in 1999 (Klar and Hell 1999). It restricts flu-
orescence to sub-diffraction regions at known positions
by switching fluorescent markers to a non-signaling state
by stimulated emission. A non-homogeneous light pattern
with at least one close-to-zero-intensity point is scanned
over the sample [For details on STED microscopy see e. g.
(Hell 2007)].
A resolution better than 6 nm (Rittweger et al. 2009a)

has been reached. Fast imaging (Westphal et al. 2007) with
frame rates as high as 200 images per second (Lauterbach
et al. 2010) has been demonstrated.
In RESOLFT microscopy general reversible saturable/

switchable optical (fluorescence) transitions are used
for confining one of several marker states to a sub-
diffraction region. As in STED microscopy the position
of the distinct marker states is predetermined by scan-
ning a non-homogeneous light pattern over the sample.
RESOLFT microscopy found manifold implementations,
even though STED microscopy remains its most promi-
nent form: GSD (Ground State Depletion) is a RESOLFT
concept which uses the population of metastable states
(e. g. triplet states) of the fluorophores to confine the
region in which fluorescence is possible. After publication
of the concept in 1995 (Dose 2009; Hell and Kroug 1995)
it was successfully implemented in 2007 (Bretschneider
et al. 2007). It provides a resolution below 8 nm (Rit-
tweger et al. 2009b). Other implementations of the
RESOLFT concept are (Hell 2007) SPEM (Saturated
Patterned Excitation Microscopy) (Heintzmann et al.
2002) and SSIM (Saturated Structured-Illumination
Microscopy) (Gustafsson 2005); however, in contrast
to STED and GSD microscopy, mathematical post-
processing is required (Rittweger et al. 2009b). A
similar method uses temporally modulated illumina-
tion and Fourier analysis to extract high frequency
components resulting from saturation effects (Fujita

et al. 2007). A special form of RESOLFT microscopy
is DSOM (Dynamic Saturation Optical Microscopy)
(Enderlein 2005), which makes explicit use of the flu-
orescence dynamics. Switchable fluorescent proteins
(Hofmann et al. 2005; Schwentker et al. 2007) as well as
switchable organic dyes (Bossi et al. 2006) were used for
RESOLFT microscopy.
In 2006, closely related variants of another elegant

approach to use the switching of states for high-resolution
imaging emerged, named PALM (Photoactivation Local-
ization Microscopy) (Betzig et al. 2006), STORM (Stochas-
tic Optical Reconstruction Microscopy) (Rust et al. 2006;
Zhuang 2009) and FPALM (Fluorescence Photoactivation
Localization Microscopy) (Hess et al. 2006). Many more
names followed as the stochastic principle was exploited
in various facets and enhancements (Patterson et al. 2010).
In these methods single molecules are switched individu-
ally (Dickson et al. 1997) and stochastically in space and
are imaged onto a camera. Only a very small subpopu-
lation of all marker molecules is kept simultaneously in
the bright state at stochastically distributed positions. On
average, at most one molecule per diffraction limited area
must be in the bright state. In contrast to the above dis-
cussed scanning methods (STED microscopy, RESOLFT
microscopy), the position of the fluorescence emission is
not known a priori. It has to be found by localizing the
origin of the fluorescence emission, as in earlier localiza-
tion concepts of few alike objects (Gordon et al. 2004;
Lidke et al. 2005; Qu et al. 2004). The molecules can be
localized with high precision (Heisenberg 1930; Winick
1986; Thompson et al. 2002) if their diffraction patterns
do not overlap. A new subset of molecules is subsequently
switched on and their positions are determined from a
new image. After numerous repeats of this cycle, a high-
resolution image can be reconstructed from themolecular
positions, which were determined from non-overlapping
diffraction patterns.
In common with the above described scanning meth-

ods, switching of the marker molecules into discernible
states is used to separate images of individual details in
time that cannot be separated forthrightly in space. In
both cases a molecular mechanism makes sure that some
of the marker molecules within the diffraction zone can-
not contribute to the (fluorescence) signal, thus enabling a
time sequential separation from those that can. Whereas
both methods use the same switching principle, in the
scanning methods the position where this switching is
going to take place is predetermined a priori by the posi-
tioning of the scanner; in the stochastic methods this
position is found a posteriori by localization.

Summary
An overview was given over the contributions of many
scientists who advanced in the 19th and 20th century
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the understanding of the limiting role of diffraction and
the definition of resolution. Several techniques had been
invented to enhance the resolution of optical far-field
microscopes. They all remained bound to double the res-
olution in the best case. Finally, at the end of the 20th
century, scientists broke the diffraction barrier in optical
microscopy by vigorously using the intrinsic marker prop-
erties instead of relying only on bent rays of light. The
theoretical limit on optical resolution has thus been aban-
doned since states of markers have been recognized as
the decisive new entities (Abbe 1873) surpassing Abbe’s
classical theory.

Endnotes
a“[. . . ], so folgt, dass, wie auch das Mikroskop in Bezug
auf die förderliche Vergrösserung noch weiter vervoll-
kommnet werden möchte, die Unterscheidungsgrenze für
centrale Beleuchtung doch niemals über den Betrag der
ganzen, und für äusserste schiefe Beleuchtung niemals
über den der halben Wellenlänge des blauen Lichts um
ein Nennenswerthes hinausgehen wird.” – [. . . ], it fol-
lows that, however no matter how the microscope may be
optimized with respect to the useful magnification, the pos-
sibility of discrimination for central illumination will never
exceed noteworthily one wavelength and for extremely
grazing illumination never half a wavelength of blue
light. [Translations of non-English excerpts provided by
the author.]
b“Nur bei photographischer Aufnahme der mikroskopis-
chen Bilder kann die Unterscheidung noch merklich
weiter reichen. Denn wegen der bedeutend kürzeren
Wellenlänge der chemisch wirksamen Strahlen werden
bei jedem Objectiv die Bedingungen für die photo-
graphische Abbildung sehr viel günstiger; nämlich so, wie
sie für das directe Sehen eine im Verhältnis von 3 : 2
gröbere Structur stellen würde.” – Only for photographic
recording of the microscopic images the distinction can
reach noticeably beyond [this limit]. Because of the consid-
erably shorter wavelength of the chemically active rays the
conditions become much better for photographic imaging,
whatever objective is used; namely as a structure that is
coarser by a ratio 3 : 2 would provide them.
c“Irgend eine bestimmte Farbe zu Grunde gelegt, ergiebt
sich der betreffende Minimalwerth [der Auflösung] für
rein centrale Beleuchtung durch Division derWellenlänge
mit dem Sinus des halben Oeffnungswinkels, für den
höchsten zulässigen Grad schiefer Beleuchtung aber bei
jedem Oeffnungswinkel genau halb so gross [. . . ]” –
Given any well-defined color, the according minimal value
[of resolution] for central illumination is given by the
wavelength divided by the sine of the half aperture
angle, but for the highest acceptable degree of grazing

incidence for every aperture angle it is exactly half this
value [. . . ].
d“[. . . ] diese Theorie soll sich ausgesprochenermassen
auf die Abbildung solcher Objecte beziehen, bei welchen
Beugung des Lichts in thesi statt findet; und sie behauptet
ja ausdrücklich, dass derartige Objecte in anderer Weise,
und nach anderen Gesetzen abgebildet werden als solche,
bei denen keine Beugung in’s Spiel kommt. Dass es nun
Objecte der letzteren Art wirklich giebt, wie auf alle
Fälle doch die selbstleuchtenden Körper, [. . . ] beschränkt
allerdings das Gebiet der Anwendung meiner Theorie,
obwohl diese Beschränkung für die Mikroskopie prak-
tisch gleichgiltig bleibt, so lange es keine mikroskopischen
Glühwürmchen giebt [. . . ].” – [. . . ] this theory refers specifi-
cally to the imaging of such objects where diffraction occurs;
and it states explicitly that such objects are imaged in a
different way and with other laws, than objects for which
diffraction plays no role. The fact that objects of the latter
kind exist, as for sure the self-luminous bodies, [. . . ] lim-
its the applicability of my theory, although this limitation
remains without importance for the microscopy as long as
there are no microscopic fireflies [. . . ].

e“Die eigentliche Capacität des Mikroskops im strengeren
Sinne aber muss ich – so lange nicht Momente geltend
gemacht werden, die ganz ausserhalb der Tragweite der
aufgestellten Theorie liegen – schon bei der oben bezeich-
neten früheren Grenze als vollständig erschöpft ansehen.”
– I must regard the actual capability of the microscope in
the rigorous sense as completely exhausted with the above
described limit – as long as no entities are claimed that are
out of reach of the derived theory.

f“Es sei die Grösse der kleinsten wahrnehmbaren Dis-
tanz ε, die der Wellenlänge im Medium des Objects λ,
der Divergenzwinkel der einfallenden Strahlen ebenda
α, und λ0, α0 seien die Werthe der letztgenannten
Grössen für Luft. Dann ist nach den weiter unten abgeleit-
eten Formeln ε = λ

2 sinα
= λ0

2 sinα0
.” – Be the size

of the minimum discernible distance ε, the size of the
wavelength in the medium of the object λ, the angle
of divergence of the incoming rays therein α, and λ0,
α0 be the values of the last-mentioned parameters in
air. Then it is according to the later derived formulas:
ε = λ

2 sinα
= λ0

2 sinα0
.

g“Le travail des miroirs employés dans les télescopes est
aujourd’hui si parfait, les verres des lunettes et des micro-
scopes sont si heureusement combinés, que les aber-
rations qui résultent des lois de l’optique géométrique
peuvent être presque entièrement évitées. Il semble
donc que les rayons partis d’un point lumineux doivent,
dans ces instruments, converger rigoureusement en un
même point; cependant il n’en est rien, car dans les
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meilleurs télescopes l’image d’une étoile conserve un
diamètre apparent sensible. La théorie que nous venons
d’exposer fournit l’explication de cette anomalie appar-
ente : [. . . ] On ne peut donc pas espérer de perfec-
tionner indéfiniment les instruments d’optique en faisant
disparaı̂tre les aberrations géométriques [. . .]” – Theman-
ufacturing of the mirrors used in the telescopes is so perfect
nowadays, the lenses of glasses and of microscopes are
so successfully combined that the aberrations that result
from the laws of geometrical optics can be almost entirely
avoided. Therefore it seems that the rays coming from
one luminous point should, in these instruments, con-
verge rigorously in one single point; however, nothing of
the sort, because in the best telescopes the image of a
star maintains a sensible diameter. The theory which we
are going to present gives an explication of this apparent
anomaly: [. . .] One can therefore not hope to perfect the
optical instruments infinitely by removing the geometrical
aberrations [. . .].

h“La théorie précédente permet de déterminer une limite
inférieure du pouvoir optique. Soient en effet deux points
lumineux dont les images ont leurs centres aux points
A et A’; supposons qu’il n’y ait pas de lumière sensible dans
chacune de ces images au delà du premier anneau brillant:
il faudra alors, pour que les deux images n’empiètent pas
l’une sur l’autre, que la distance AA’ soit au moins égale
au double du rayon du premier anneau brillant, et, par
suite, que le diamètre apparent de la droite qui joint les
deux points lumineux soit au moins égal au double de la
déviation du premeir anneau brillant. En désignant cette
déviation par ω, 1

2ω sera une limite inférieure du pouvoir
optique. La déviation ω correspondant au deuxième max-
imum, on aura, d’après la valeur trouvée plus haut, [. . . ]
sinω = 0, 819 λ

R .” – The preceding theory [the derivation
of the diffraction pattern of an annular aperture] allows a
lower limit of the optical capability to be established. Let
be effective two bright points whose images have the centers
at A and A’; suppose that there is no light detectable in any
of their images beyond the first bright ring: In order not to
cover one image with the other, the distance AA’ must there-
fore be at least equal to the double of the beam of the first
bright ring, and, accordingly, the apparent diameter of the
perpendicular which joins the two luminous points must
be at least equal to the double of the deviation of the first
bright ring. If we denote this deviation with ω, 1

2ω will be a
lower limit of the optical capability. The deviation ω which
corresponds to the second maximum, will be, according to
the value found above, [. . . ] sinω = 0, 819 λ

R .

i“It would seem that the present subject, like many others,
has suffered from over specialization,much that is familiar
to the microscopist being almost unknown to physicists,
and vice versá.”

j“[. . . ], the first dark ring corresponding to one of the
lines would fall on the focal point of the neighbouring
one – a state of things apparently inconsistent with good
definition.”

k“It would certainly require a lens more than usually free
from spherical aberration, and [. . . ] achromatic [. . . ]. It
must be understood that nothing is here said against the
practicability of covering a small space with lines at the
rate of 3000 to the inch, a feat probably well within the
powers of a good microscopic object-glass.”
l“The investigation of the form and brightness of the rings
or rays surrounding the image of a star as seen in a good
telescope, when a diaphragm bounded by a rectilinear
contour is placed upon the object-glass, [. . . ] is never dif-
ficult.”
m“Having ascertained about five and thirty years ago, by
comparisons of the performance of several telescopes of
very different apertures that the diameters of star-disks
varied inversely as the diameter of the aperture, I exam-
ined with a great variety of apertures a vast number of
double stars, whose distances seemed to be well deter-
mined, and not liable to rapid change, in order to ascertain
the separating power of those apertures, as expressed in
inches of aperture and seconds of distance. I thus deter-
mined as a constant, that a one-inch aperture would just
separate a double star composed of two stars [. . . ], if their
central distance was 4′′.56; – the atmospheric circum-
stances being moderately favourable. Hence, the separat-
ing power of any given aperture, a, will be expressed by
the fraction 4′′.56/a.”
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